Implication of CD38 gene in podocyte epithelial-to-mesenchymal transition and glomerular sclerosis
نویسندگان
چکیده
CD38 is a multifunctional protein involving in a number of signalling pathways. Given that the lack of CD38 is considered as a dedifferentiation marker of lymphocytes and other cells, we hypothesized that CD38 and its signalling pathway may participate in the epithelial-to-mesenchymal transition (EMT) process of podocytes and thereby regulates the integrity of glomerular structure and function. Western blot analysis and RT-PCR demonstrated that renal tissue CD38 expression was lacking in CD38(-/-) mice or substantially reduced in renal CD38 shRNA-transfected WT (CD38-shRNA) mice compared to CD38(+/+) littermates. Confocal fluorescent microscopy demonstrated the reduced expression of epithelial markers (P-Cadherin, ZO-1 and podocin) and increased expression of mesenchymal markers (FSP-1, α-SMA and desmin) in the glomeruli of CD38(-/-) and CD38-shRNA mice compared to CD38(+/+) mice. Morphological examinations showed profound injury in the glomeruli of CD38(-/-) or CD38-shRNA mice compared to CD38(+/+) mice. This enhanced glomerular injury in CD38(-/-) or CD38-shRNA mice was accompanied by increased albuminuria and proteinuria. DOCA/high salt treatment further decreased the expression of epithelial markers and increased the abundance of mesenchymal markers, which were accompanied by more increased glomerular damage index and mean arterial pressure in CD38(-/-) and CD38-shRNA mice than CD38(+/+) mice. In vitro studies showed that inhibition of CD38 enhances the EMT in podocytes. In conclusion, our observations reveal that the normal expression of CD38 importantly contributes to the differentiation and function of podocytes and the defect of this gene expression may be a critical mechanism inducing EMT and consequently resulting in glomerular injury and sclerosis.
منابع مشابه
STAG ES OF DEVELOPMENT OF RENAL GLOMERULI IN THE NEWBORN RAT KIDNEY
Glomerular development of the kidney was studied in newborn rats by electron microscopy. Four different stages of glomerular development were defined: vesicle fonnation, S-shaped body stage, capillary loop fonnation, and glomerular maturation. In the fust stage, the mesenchymal cells form a spheroid mass. This is followed by the S-shaped body stage in which clefts appear in the mass. Afte...
متن کاملPodocyte Dedifferentiation: A Specialized Process for a Specialized Cell
The podocyte is one of the two cell types that contribute to the formation of the glomerular filtration barrier (GFB). It is a highly specialized cell with a unique structure. The key feature of the podocyte is its foot processes that regularly interdigitate. A structure known as the slit diaphragm can be found bridging the interdigitations. This molecular sieve comprises the final layer of the...
متن کاملActivation of podocyte Notch mediates early Wt1 glomerulopathy.
The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion ...
متن کاملEpithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملMesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy.
We previously reported that in a model of spontaneously progressive glomerular injury with early podocyte loss, abnormal migration, and proliferation of glomerular parietal epithelial progenitor cells contributed to the formation of synechiae and crescentic lesions. Here we first investigated whether a similar sequence of events could be extended to rats with adriamycin (ADR)-induced nephropath...
متن کامل